Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Remote Sensing of Environment, Vol. 270, 2022.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
AU - Duncanson, Laura
AU - Kellner, James R.
AU - Armston, John
AU - Dubayah, Ralph
AU - Minor, David M.
AU - Hancock, Steven
AU - Healey, Sean P.
AU - Patterson, Paul L.
AU - Saarela, Svetlana
AU - Marselis, Suzanne
AU - Silva, Carlos E.
AU - Bruening, Jamis
AU - Goetz, Scott J.
AU - Tang, Hao
AU - Hofton, Michelle
AU - Blair, Bryan
AU - Luthcke, Scott
AU - Fatoyinbo, Lola
AU - Abernethy, Katharine
AU - Alonso, Alfonso
AU - Andersen, Hans-Erik
AU - Aplin, Paul
AU - Baker, Timothy R.
AU - Barbier, Nicolas
AU - Bastin, Jean Francois
AU - Biber, Peter
AU - Boeckx, Pascal
AU - Bogaert, Jan
AU - Boschetti, Luigi
AU - Boucher, Peter Brehm
AU - Boyd, Doreen S.
AU - Burslem, David F.R.P.
AU - Calvo-Rodriguez, Sofia
AU - Chave, Jérôme
AU - Chazdon, Robin L.
AU - Clark, David B.
AU - Clark, Deborah A.
AU - Cohen, Warren B.
AU - Coomes, David A.
AU - Corona, Piermaria
AU - Cushman, K.C.
AU - Cutler, Mark E.J.
AU - Dalling, James W.
AU - Dalponte, Michele
AU - Dash, Jonathan
AU - de-Miguel, Sergio
AU - Deng, Songqiu
AU - Ellis, Peter Woods
AU - Erasmus, Barend
AU - Fekety, Patrick A.
AU - Fernandez-Landa, Alfredo
AU - Ferraz, Antonio
AU - Fischer, Rico
AU - Fisher, Adrian G.
AU - García-Abril, Antonio
AU - Gobakken, Terje
AU - Hacker, Jorg M.
AU - Heurich, Marco
AU - Hill, Ross A.
AU - Hopkinson, Chris
AU - Huang, Huabing
AU - Hubbell, Stephen P.
AU - Hudak, Andrew T.
AU - Huth, Andreas
AU - Imbach, Benedikt
AU - Jeffery, Kathryn J.
AU - Katoh, Masato
AU - Kearsley, Elizabeth
AU - Kenfack, David
AU - Kljun, Natascha
AU - Knapp, Nikolai
AU - Král, Kamil
AU - Krůček, Martin
AU - Labrière, Nicolas
AU - Lewis, Simon L.
AU - Longo, Marcos
AU - Lucas, Richard M.
AU - Main, Russell
AU - Manzanera, Jose A.
AU - Martínez, Rodolfo Vásquez
AU - Mathieu, Renaud
AU - Memiaghe, Herve
AU - Meyer, Victoria
AU - Mendoza, Abel Monteagudo
AU - Monerris, Alessandra
AU - Montesano, Paul
AU - Morsdorf, Felix
AU - Næsset, Erik
AU - Naidoo, Laven
AU - Nilus, Reuben
AU - O’Brien, Michael
AU - Orwig, David A.
AU - Papathanassiou, Konstantinos
AU - Parker, Geoffrey
AU - Philipson, Christopher
AU - Phillips, Oliver L.
AU - Pisek, Jan
AU - Poulsen, John R.
AU - Pretzsch, Hans
AU - Rüdiger, Christoph
AU - Saatchi, Sassan
AU - Sanchez-Azofeifa, Arturo
AU - Sanchez-Lopez, Nuria
AU - Scholes, Robert
AU - Silva, Carlos A.
AU - Simard, Marc
AU - Skidmore, Andrew
AU - Stereńczak, Krzysztof
AU - Tanase, Mihai
AU - Torresan, Chiara
AU - Valbuena, Ruben
AU - Verbeeck, Hans
AU - Vrska, Tomas
AU - Wessels, Konrad
AU - White, Joanne C.
AU - White, Lee J.T.
AU - Zahabu, Eliakimu
AU - Zgraggen, Carlo
PY - 2022
Y1 - 2022
N2 - NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
AB - NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
KW - LiDAR
KW - GEDI
KW - Waveform
KW - Forest
KW - Aboveground biomass
KW - Modeling
U2 - 10.1016/j.rse.2021.112845
DO - 10.1016/j.rse.2021.112845
M3 - Article
VL - 270
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
SN - 0034-4257
ER -