Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Biogeosciences, Vol. 11, No. 11, 06.06.2014, p. 2991-3013.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments
AU - Vicca, S.
AU - Bahn, M.
AU - Estiarte, M.
AU - van Loon, E.E.
AU - Vargas, R.
AU - Alberti, G.
AU - Ambuis, P.
AU - Arain, M.A.
AU - Beier, C.
AU - Bentley, L.P.
AU - Borken, W.B.
AU - Collins, S.L.
AU - de Gato, G.
AU - Dukes, J.S.
AU - Escolar, C.
AU - Fay, P.
AU - Guidolotti, G.
AU - Hanson, P.J.
AU - Kahmen, A.
AU - Kroel-Dulay, G.
AU - Ladreiter-Knauss, T.
AU - Larsen, K.S.
AU - Lellei-Kovacs, E.
AU - Lebrija-Trejos, E.
AU - Maestre, F.T.
AU - Marhan, S.
AU - Marshall, M.
AU - Meir, P.
AU - Miao, Y.
AU - Muhr, J.
AU - Niklaus, P.A.
AU - Ogaya, R.
AU - Penuelas, J.
AU - Poll, C.
AU - Rustad, L.E.
AU - Savage, K.
AU - Schinlbacher, A.
AU - Schmidt, I.K.
AU - Smith, A.R.
AU - Sotta, E.D.
AU - Suseela, V.
AU - Tietema, A.
AU - van Gestel, N.
AU - van Straaten, O.
AU - Wan, S.
AU - Wenber, U.
AU - Janssens, I.A.
PY - 2014/6/6
Y1 - 2014/6/6
N2 - As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available, or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for seven of these 38 experiments, this hypothesis was rejected. Importantly, these were the experiments with the most reliable datasets, i.e., those providing high-frequency measurements of SCE. Accordingly, regression tree analysis demonstrated that measurement frequency was crucial; our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate-dependencies of SCE.
AB - As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available, or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for seven of these 38 experiments, this hypothesis was rejected. Importantly, these were the experiments with the most reliable datasets, i.e., those providing high-frequency measurements of SCE. Accordingly, regression tree analysis demonstrated that measurement frequency was crucial; our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate-dependencies of SCE.
UR - https://bg.copernicus.org/articles/11/2991/2014/bg-11-2991-2014-supplement.pdf
U2 - 10.5194/bg-11-2991-2014
DO - 10.5194/bg-11-2991-2014
M3 - Article
VL - 11
SP - 2991
EP - 3013
JO - Biogeosciences
JF - Biogeosciences
SN - 1726-4170
IS - 11
ER -