Electronic versions

Documents

  • Main_Text-1

    Accepted author manuscript, 926 KB, PDF document

DOI

Predation can effectively limit insect herbivores with cascading effects on plant community composition and diversity of tropical rainforests. Assessing variation in predation is therefore important to understand the mechanisms structuring complex rainforest ecosystems. Variation in predation with time of day may provide herbivores with temporal enemy-free space. Trichomes (plant hairs) may provide spatial enemy-free space by increasing climbing resistance for walking arthropod predators and by scattering bat echolocation calls. Artificial model prey is commonly used to measure predation pressure on insect herbivores. Whether model prey shape is sufficient to deceive predators and whether attacks represent actual predation however remain unresolved. We used artificial, plasticine prey to assess temporal and spatial variation in predation in two Panamanian rainforests and tested whether model prey shape is as important for prey recognition by predators as often assumed. We assessed the effect of prey shape and size, time of day, and trichomes on predation by comparing attacks on caterpillar- and humanoid-shaped figurines. We find higher nocturnal than diurnal predation in one but not the other forest, suggesting that herbivores may benefit from enemy-free space during the day in some forests. We find no evidence for an effect of trichomes on predation in the two plant species tested. Equal attack numbers on caterpillar- and humanoid-shaped objects challenge the idea that the visual resemblance of model prey alone is sufficient to deceive predators. We conclude that attacks on model prey represent a variety of responses to novel objects (e.g. exploration, aggression, possibly predation) and urge caution when interpreting their results.

Keywords

  • enemy-free space, insects, multitrophic, Panama, predation, Predator-prey interactions, prey shape, trichomes
Original languageEnglish
Pages (from-to)1259-1269
JournalBiotropica
Volume54
Issue number5
Early online date10 Aug 2022
DOIs
Publication statusPublished - 22 Sept 2022
View graph of relations