Electronic versions

Documents

DOI

Objectives. Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson’s disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting.
Methods. Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5).
Results. Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628ms, off-medication post-intervention = 564ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received.
Conclusion. Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.
Original languageEnglish
Article number102997
JournalNeurophysiologie Clinique/Clinical Neurophysiology
Volume54
Issue number5
Early online date10 Jul 2024
DOIs
Publication statusPublished - Sept 2024

Research outputs (1)

View all

View graph of relations