Historic Spatial Patterns of Storm-Driven Compound Events in UK Estuaries
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Estuaries and Coasts, Vol. 46, No. 1, 01.2023, p. 30-56.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Historic Spatial Patterns of Storm-Driven Compound Events in UK Estuaries
AU - Lyddon, Charlotte
AU - Robins, Peter
AU - Lewis, Matthew
AU - Barkwith, Andrew
AU - Vasilopoulos, Grigorios
AU - Haigh, Ivan
AU - Coulthard, Tom
PY - 2023/1
Y1 - 2023/1
N2 - Compound estuarine flooding is driven by extreme sea-levels and river discharge occurring concurrently, or in close succession, and threatens low-lying coastal regions worldwide. We hypothesise that these drivers of flooding rarely occur independently and co-operate at sub-daily timescales. This research aimed to identify regions and individual estuaries within Britain susceptible to storm-driven compound events, using 27 tide gauges linked to 126 river gauges covering a 30-year record. Five methods were evaluated, based on daily mean, daily maximum, and instantaneous 15-min discharge data to identify extremes in the river records, with corresponding skew surges identified within a ‘storm window’ based on average hydrograph duration. The durations, relative timings, and overlap of these extreme events were also calculated. Dependence between extreme skew surge and river discharge in Britain displayed a clear east–west split, with gauges on the west coast showing stronger correlations up to 0.33. Interpreting dependence based on correlation alone can be misleading and should be considered alongside number of historic extreme events. The analyses identified 46 gauges, notably the Rivers Lune and Orchy, where there has been the greatest chance and most occurrences of river-sea extremes coinciding, and where these events readily overlapped one another. Our results were sensitive to the analysis method used. Most notably, daily mean discharge underestimated peaks in the record and did not accurately capture likelihood of compound events in 68% of estuaries. This has implications for future flood risk in Britain, whereby studies should capture sub-daily timescale and concurrent sea-fluvial climatology to support long-term flood management plans.
AB - Compound estuarine flooding is driven by extreme sea-levels and river discharge occurring concurrently, or in close succession, and threatens low-lying coastal regions worldwide. We hypothesise that these drivers of flooding rarely occur independently and co-operate at sub-daily timescales. This research aimed to identify regions and individual estuaries within Britain susceptible to storm-driven compound events, using 27 tide gauges linked to 126 river gauges covering a 30-year record. Five methods were evaluated, based on daily mean, daily maximum, and instantaneous 15-min discharge data to identify extremes in the river records, with corresponding skew surges identified within a ‘storm window’ based on average hydrograph duration. The durations, relative timings, and overlap of these extreme events were also calculated. Dependence between extreme skew surge and river discharge in Britain displayed a clear east–west split, with gauges on the west coast showing stronger correlations up to 0.33. Interpreting dependence based on correlation alone can be misleading and should be considered alongside number of historic extreme events. The analyses identified 46 gauges, notably the Rivers Lune and Orchy, where there has been the greatest chance and most occurrences of river-sea extremes coinciding, and where these events readily overlapped one another. Our results were sensitive to the analysis method used. Most notably, daily mean discharge underestimated peaks in the record and did not accurately capture likelihood of compound events in 68% of estuaries. This has implications for future flood risk in Britain, whereby studies should capture sub-daily timescale and concurrent sea-fluvial climatology to support long-term flood management plans.
KW - Coast
KW - Combination hazard
KW - Compound flooding
KW - Estuary
KW - Flood risk
U2 - 10.1007/s12237-022-01115-4
DO - 10.1007/s12237-022-01115-4
M3 - Article
VL - 46
SP - 30
EP - 56
JO - Estuaries and Coasts
JF - Estuaries and Coasts
SN - 1559-2723
IS - 1
ER -