Electronic versions

Documents

DOI

Photonic hook is a high-intensity, bent light focus with a proportional curvature to the wavelength of the incident light. Based on this unique light-bending phenomenon, a novel nearfield photonic switch by means of a right-trapezoid dielectric Janus particle-lens embedded in the core of a planar waveguide is proposed for switching the photonic signals at two common optical communication wavelengths, 1310 nm and 1550 nm, by using numerical simulations. The signals at these two wavelengths can be guided to different routes according to their oppositely bent photonic hooks to realise wavelength selective switching. The switching mechanism is analysed by an in-house
developed three-dimensional (3D) Poynting vector visualisation technology. It demonstrates that the 3D distribution and number of Poynting vector vortexes produced by the particle highly affect the shapes and bending directions of the photonic hooks causing the near-field switching, and multiple independent high-magnitude areas matched by the regional Poynting vector streamlines can form
these photonic hooks. The corresponding mechanism can only be represented by 3D Poynting vector distributions and is being reported for the first time.

Keywords

  • Poynting vector, optical switch, photonic hook, vortex
Original languageEnglish
Article number154
JournalPhotonics
Volume9
Issue number3
DOIs
Publication statusPublished - 4 Mar 2022

Total downloads

No data available
View graph of relations