Personality-specific carry-over effects on breeding
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Proceedings of the Royal Society B: Biological Sciences, Vol. 287, No. 1940, 20202381, 09.12.2020.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Personality-specific carry-over effects on breeding
AU - Harris, Stephanie M
AU - Descamps, Sébastien
AU - Sneddon, Lynne U
AU - Cairo, Milena
AU - Bertrand, Philip
AU - Patrick, Samantha C
PY - 2020/12/9
Y1 - 2020/12/9
N2 - Carry-over effects describe the phenomenon whereby an animal's previous conditions influence its subsequent performance. Carry-over effects are unlikely to affect individuals uniformly, but the factors modulating their strength are poorly known. Variation in the strength of carry-over effects may reflect individual differences in pace-of-life: slow-paced, shyly behaved individuals are thought to favour an allocation to self-maintenance over current reproduction, compared to their fast-paced, boldly behaved conspecifics (the pace-of-life syndrome hypothesis). Therefore, detectable carry-over effects on breeding should be weaker in bolder individuals, as they should maintain an allocation to reproduction irrespective of previous conditions, while shy individuals should experience stronger carry-over effects. We tested this prediction in black-legged kittiwakes breeding in Svalbard. Using miniature biologging devices, we measured non-breeding activity of kittiwakes and monitored their subsequent breeding performance. We report a number of negative carry-over effects of non-breeding activity on breeding, which were generally stronger in shyer individuals: more active winters were followed by later breeding phenology and poorer breeding performance in shy birds, but these effects were weaker or undetected in bolder individuals. Our study quantifies individual variability in the strength of carry-over effects on breeding and provides a mechanism explaining widespread differences in individual reproductive success.
AB - Carry-over effects describe the phenomenon whereby an animal's previous conditions influence its subsequent performance. Carry-over effects are unlikely to affect individuals uniformly, but the factors modulating their strength are poorly known. Variation in the strength of carry-over effects may reflect individual differences in pace-of-life: slow-paced, shyly behaved individuals are thought to favour an allocation to self-maintenance over current reproduction, compared to their fast-paced, boldly behaved conspecifics (the pace-of-life syndrome hypothesis). Therefore, detectable carry-over effects on breeding should be weaker in bolder individuals, as they should maintain an allocation to reproduction irrespective of previous conditions, while shy individuals should experience stronger carry-over effects. We tested this prediction in black-legged kittiwakes breeding in Svalbard. Using miniature biologging devices, we measured non-breeding activity of kittiwakes and monitored their subsequent breeding performance. We report a number of negative carry-over effects of non-breeding activity on breeding, which were generally stronger in shyer individuals: more active winters were followed by later breeding phenology and poorer breeding performance in shy birds, but these effects were weaker or undetected in bolder individuals. Our study quantifies individual variability in the strength of carry-over effects on breeding and provides a mechanism explaining widespread differences in individual reproductive success.
KW - Animal Migration
KW - Animals
KW - Behavior, Animal
KW - Birds
KW - Breeding
KW - Charadriiformes
KW - Female
KW - Male
KW - Personality
KW - Reproduction
KW - Seasons
KW - Svalbard
U2 - 10.1098/rspb.2020.2381
DO - 10.1098/rspb.2020.2381
M3 - Article
C2 - 33290675
VL - 287
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
SN - 0962-8452
IS - 1940
M1 - 20202381
ER -