Resource assessment for future generations of tidal-stream energy arrays
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- PDB4613-00.pdf
Final published version, 3.26 MB, PDF document
Licence: CC BY Show licence
DOI
Tidal-stream energy devices currently require spring tide velocities (SV) in excess of 2.5 m/s and water depths in the range 25–50 m. The tidal-stream energy resource of the Irish Sea, a key strategic region for development, was analysed using a 3D hydrodynamic model assuming existing, and potential future technology. Three computational grid resolutions and two boundary forcing products were used within model configuration, each being extensively validated. A limited resource (annual mean of 4 TJ within a 90 km2 extent) was calculated assuming current turbine technology, with limited scope for long-term sustainability of the industry. Analysis revealed that the resource could increase seven fold if technology were developed to efficiently harvest tidal-streams 20% lower than currently required (SV > 2 m/s) and be deployed in any water depths greater than 25 m. Moreover, there is considerable misalignment between the flood and ebb current directions, which may reduce the practical resource. An average error within the assumption of rectilinear flow was calculated to be 20°, but this error reduced to ∼3° if lower velocity or deeper water sites were included. We found resource estimation is sensitive to hydrodynamic model resolution, and finer spatial resolution (
Original language | English |
---|---|
Pages (from-to) | 403-415 |
Journal | Energy |
Volume | 83 |
Early online date | 11 Mar 2015 |
DOIs | |
Publication status | Published - 1 Apr 2015 |
Projects (1)
Effects of tidal flows on the performance of tidal stream turbines
Project: Research
Total downloads
No data available