Robust Stability of Barrier-Based Model Predictive Control
Research output: Contribution to journal › Article › peer-review
Electronic versions
DOI
Conditions for robust input-output stability of barrier-based model predictive control of linear systems with linear and convex nonlinear (hard or soft) constraints are established through the construction of integral quadratic constraints (IQCs). The IQCs can be used to determine sufficient conditions for global closed-loop stability. In particular, conditions for robust stability can be obtained in the presence of unstructured model uncertainty. IQCs with both static and dynamic multipliers are developed and appropriate convex searches for the multipliers are presented. The effectiveness of the robust stability analysis is demonstrated through an illustrative numerical example
Original language | Unknown |
---|---|
Pages (from-to) | 1879-1886 |
Number of pages | 8 |
Journal | IEEE Transactions on Automatic Control |
Volume | 66 |
Issue number | 4 |
Early online date | 21 Jul 2020 |
DOIs | |
Publication status | Published - 1 Apr 2021 |
Externally published | Yes |