Soil metabolomics - current challenges and future perspectives

Research output: Contribution to journalArticlepeer-review

Electronic versions

Documents

  • Soil_metabolomics_perspectives_MS_final

    Accepted author manuscript, 1.08 MB, Word document

    Embargo ends: 16/03/25

    Licence: CC BY-NC-ND Show licence

DOI

Soil is an extremely complex and dynamic matrix, in part, due to the wide diversity of organisms living within it. Soil organic matter (SOM) is the fundamental substrate on which the delivery of ecosystem services depends, providing the metabolic fuel to drive soil function. As such, studying the soil metabolome (the diversity and concentration of low molecular weight metabolites), as a subset of SOM, holds the potential to greatly expand our understanding of the behaviour, fate, interaction and functional significance of small organic molecules in soil. Encompassing a wide range of chemical classes (including amino acids, peptides, lipids and carbohydrates) and a large number of individual molecules (ca. n = 105 to 106), the metabolome is a resultant (indirect) output of several layers of a biological hierarchy, namely the metagenome, metatranscriptome and metaproteome. As such, it may also provide support and validation for these “multi-omics” datasets. We present a case for the increased use of untargeted metabolomics in soil biochemistry, particularly for furthering our fundamental understanding of the functions driving SOM composition and biogeochemical cycling. Further, we discuss the scale of the challenge in terms of metabolite extraction, analysis and interpretation in complex plant-soil-microbial systems. Lastly, we highlight key knowledge gaps which currently limit our use of metabolomic approaches to better understand soil processes, including: (i) interpretation of large untargeted metabolomic datasets; (ii) the source, emission and fate of soil-derived volatile organic compounds (VOCs), (iii) assessing temporal fluxes of metabolites, and (iv) monitoring ecological interactions in the rhizosphere. While the application of metabolomics in ecosystem science is still in its relative infancy, its importance in understanding the biochemical system in relation to regulation, management and underpinning the delivery of ecosystem services is key to further elucidating the complex links between organisms, as well as the fundamental ability of the biological community to process and cycle key nutrients.

Keywords

  • Dissolved organic carbon, Soil organic matter, Biochemical profiling, Nutrient cycling, Soil quality
Original languageEnglish
Article number109382
JournalSoil Biology and Biochemistry
Early online date12 Mar 2024
DOIs
Publication statusPublished - 1 Jun 2024
View graph of relations