Temperature adaptation of bacterial growth and C-14-glucose mineralisation in a laboratory study

Research output: Contribution to journalArticlepeer-review

Electronic versions

  • Johanna Birgander
    Lund University
  • Stephanie Reischke
    Lund University
  • Davey L. Jones
  • Johannes Rousk
    Lund University
Microbial decomposition of soil organic matter (SOM) is the source of most of the terrestrial carbon dioxide emission. Consequently, our ability to predict how climate warming will affect the global carbon (C) budget relies on our understanding of the temperature relationship and adaptability of microbial processes. We exposed soil microcosms to temperatures between 0 and 54 °C for 2 months. After this, bacterial growth (leucine incorporation) and functioning (14C-glucose mineralisation) were estimated at 8 temperatures in the interval 0–54 °C to determine temperature relationships and apparent minimum (Tmin) and optimum (Topt) temperatures for growth and mineralisation. We predicted that incubation at temperatures above the initial Topt for bacteria would select for a warm-adapted community, i.e. a positive shift in Tmin and Topt for bacterial growth, and that this adaptation of the bacterial community would coincide with a similar shift also for their functioning. As anticipated, we found that exposure to temperatures below Topt did not change the temperature relationship of bacterial growth or mineralisation. Interestingly, Topt for glucose mineralisation was >20 °C higher than that for growth. For bacterial growth, the temperature relationship for the bacterial community was modulated when soils were incubated at temperature above their initial Topt (≈30 °C). This was shown by an increase in Tmin of 0.8 °C for every 1 °C increase in soil temperature, evidencing a shift towards warm-adapted bacteria. Similarly, the Q10 (15–25 °C) for bacterial growth increased at temperature higher than Topt. We could not detect a corresponding temperature adaptation of the decomposer functioning. We discuss possible underlying reasons for the temperature-responses of bacterial processes. We note that a temperature adaptation will be rapid when exceeding the Topt, which initially were >20 °C higher for glucose mineralisation than growth. This difference could suggest that different responses to warming exposure should be expected for these microbial processes.

Keywords

  • Glucose mineralisation, Respiration, Decomposition, Bacterial growth, Temperature adaptation, Acclimation, H-3-leucine incorporation, Anthropogenic global warming
Original languageEnglish
Pages (from-to)294-303
JournalSoil Biology and Biochemistry
Volume65
Early online date26 Jun 2013
DOIs
Publication statusPublished - 1 Oct 2013
View graph of relations