Temperature adaptation of bacterial growth and C-14-glucose mineralisation in a laboratory study
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Soil Biology and Biochemistry, Vol. 65, 01.10.2013, p. 294-303.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Temperature adaptation of bacterial growth and C-14-glucose mineralisation in a laboratory study
AU - Birgander, Johanna
AU - Reischke, Stephanie
AU - Jones, Davey L.
AU - Rousk, Johannes
PY - 2013/10/1
Y1 - 2013/10/1
N2 - Microbial decomposition of soil organic matter (SOM) is the source of most of the terrestrial carbon dioxide emission. Consequently, our ability to predict how climate warming will affect the global carbon (C) budget relies on our understanding of the temperature relationship and adaptability of microbial processes. We exposed soil microcosms to temperatures between 0 and 54 °C for 2 months. After this, bacterial growth (leucine incorporation) and functioning (14C-glucose mineralisation) were estimated at 8 temperatures in the interval 0–54 °C to determine temperature relationships and apparent minimum (Tmin) and optimum (Topt) temperatures for growth and mineralisation. We predicted that incubation at temperatures above the initial Topt for bacteria would select for a warm-adapted community, i.e. a positive shift in Tmin and Topt for bacterial growth, and that this adaptation of the bacterial community would coincide with a similar shift also for their functioning. As anticipated, we found that exposure to temperatures below Topt did not change the temperature relationship of bacterial growth or mineralisation. Interestingly, Topt for glucose mineralisation was >20 °C higher than that for growth. For bacterial growth, the temperature relationship for the bacterial community was modulated when soils were incubated at temperature above their initial Topt (≈30 °C). This was shown by an increase in Tmin of 0.8 °C for every 1 °C increase in soil temperature, evidencing a shift towards warm-adapted bacteria. Similarly, the Q10 (15–25 °C) for bacterial growth increased at temperature higher than Topt. We could not detect a corresponding temperature adaptation of the decomposer functioning. We discuss possible underlying reasons for the temperature-responses of bacterial processes. We note that a temperature adaptation will be rapid when exceeding the Topt, which initially were >20 °C higher for glucose mineralisation than growth. This difference could suggest that different responses to warming exposure should be expected for these microbial processes.
AB - Microbial decomposition of soil organic matter (SOM) is the source of most of the terrestrial carbon dioxide emission. Consequently, our ability to predict how climate warming will affect the global carbon (C) budget relies on our understanding of the temperature relationship and adaptability of microbial processes. We exposed soil microcosms to temperatures between 0 and 54 °C for 2 months. After this, bacterial growth (leucine incorporation) and functioning (14C-glucose mineralisation) were estimated at 8 temperatures in the interval 0–54 °C to determine temperature relationships and apparent minimum (Tmin) and optimum (Topt) temperatures for growth and mineralisation. We predicted that incubation at temperatures above the initial Topt for bacteria would select for a warm-adapted community, i.e. a positive shift in Tmin and Topt for bacterial growth, and that this adaptation of the bacterial community would coincide with a similar shift also for their functioning. As anticipated, we found that exposure to temperatures below Topt did not change the temperature relationship of bacterial growth or mineralisation. Interestingly, Topt for glucose mineralisation was >20 °C higher than that for growth. For bacterial growth, the temperature relationship for the bacterial community was modulated when soils were incubated at temperature above their initial Topt (≈30 °C). This was shown by an increase in Tmin of 0.8 °C for every 1 °C increase in soil temperature, evidencing a shift towards warm-adapted bacteria. Similarly, the Q10 (15–25 °C) for bacterial growth increased at temperature higher than Topt. We could not detect a corresponding temperature adaptation of the decomposer functioning. We discuss possible underlying reasons for the temperature-responses of bacterial processes. We note that a temperature adaptation will be rapid when exceeding the Topt, which initially were >20 °C higher for glucose mineralisation than growth. This difference could suggest that different responses to warming exposure should be expected for these microbial processes.
KW - Glucose mineralisation
KW - Respiration
KW - Decomposition
KW - Bacterial growth
KW - Temperature adaptation
KW - Acclimation
KW - H-3-leucine incorporation
KW - Anthropogenic global warming
U2 - 10.1016/j.soilbio.2013.06.006
DO - 10.1016/j.soilbio.2013.06.006
M3 - Article
VL - 65
SP - 294
EP - 303
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
SN - 0038-0717
ER -