Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Scientific Reports, Vol. 7, 3682, 16.06.2017.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT
AU - Golyshina, Olga
AU - Hai, Tran
AU - Reva, Olga N.
AU - Lemak, Sofia
AU - Yakunin, Alexander F.
AU - Goesmann, Alexander
AU - Nechitaylo, Taras Y.
AU - LaCono, Violetta
AU - Smedile, Francesco
AU - Slesarev, Alexei
AU - Rojo, David
AU - Barbas, Coral
AU - Ferrer, Manuael
AU - Yakimov, Michail M.
AU - Golyshin, Peter
PY - 2017/6/16
Y1 - 2017/6/16
N2 - Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique physiological traits. In a genome-based study of Ferroplasma acidiphilum YT, the only species of the genus Ferroplasma with a validly published name, we assessed its central metabolism and genome stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis points to F. acidiphilum YT having an obligate peptidolytic oligotrophic lifestyle alongside with anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases are substituted by ‘ancient’ CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 × 10−8 single nucleotide substitutions per site per generation, which is among the highest values recorded for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum YT variants from geographically distant populations.
AB - Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique physiological traits. In a genome-based study of Ferroplasma acidiphilum YT, the only species of the genus Ferroplasma with a validly published name, we assessed its central metabolism and genome stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis points to F. acidiphilum YT having an obligate peptidolytic oligotrophic lifestyle alongside with anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases are substituted by ‘ancient’ CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 × 10−8 single nucleotide substitutions per site per generation, which is among the highest values recorded for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum YT variants from geographically distant populations.
U2 - 10.1038/s41598-017-03904-5
DO - 10.1038/s41598-017-03904-5
M3 - Article
VL - 7
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 3682
ER -