DFT-Spread Spectrally Overlapped Hybrid OFDM-Digital Filter Multiple Access IMDD PONs
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Sensors, Vol. 21, No. 17, 5903, 02.09.2021.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - DFT-Spread Spectrally Overlapped Hybrid OFDM-Digital Filter Multiple Access IMDD PONs
AU - Sankoh, Abdulai
AU - Jin, Wei
AU - Zhong, Zhuqiang
AU - He, Jiaxiang
AU - Hong, Yanhua
AU - Giddings, Roger
AU - Tang, Jianming
PY - 2021/9/2
Y1 - 2021/9/2
N2 - A novel transmission technique-namely, a DFT-spread spectrally overlapped hybrid OFDM-digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)-is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs. Compared with previously reported PONs excluding DFT-spread, a significant peak-to-average power ratio (PAPR) reduction of over 2 dB is achieved, leading to a 1 dB reduction in the optimal signal clipping ratio (CR). As a direct consequence of the PAPR reduction, the proposed PON has excellent tolerance to reduced digital-to-analogue converter/analogue-to-digital converter (DAC/ADC) bit resolution, and can therefore ensure the utilization of a minimum DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1 × 10 -3). In addition, the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances.
AB - A novel transmission technique-namely, a DFT-spread spectrally overlapped hybrid OFDM-digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)-is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs. Compared with previously reported PONs excluding DFT-spread, a significant peak-to-average power ratio (PAPR) reduction of over 2 dB is achieved, leading to a 1 dB reduction in the optimal signal clipping ratio (CR). As a direct consequence of the PAPR reduction, the proposed PON has excellent tolerance to reduced digital-to-analogue converter/analogue-to-digital converter (DAC/ADC) bit resolution, and can therefore ensure the utilization of a minimum DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1 × 10 -3). In addition, the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances.
U2 - 10.3390/s21175903
DO - 10.3390/s21175903
M3 - Article
C2 - 34502798
VL - 21
JO - Sensors
JF - Sensors
SN - 1424-8220
IS - 17
M1 - 5903
ER -